

#### Introduction

**Question:** Let X be a Fano threefold. Can  $D^b(X)$ determine X up to isomorphism?

**Answer:** Yes, by Bondal–Orlov's reconstruction theorem.

#### Question

Can "less" data than the whole derived category  $D^b(X)$  determine X up to isomorphism?

For some Fano threefolds, "less data" means the Kuznetsov component.

**Example.** For X a cubic threefold, an admissible subcategory of  $D^b(X)$  called the Kuznetsov component  $\mathcal{K}u(X)$  determines it up to isomorphism [1].

In this poster, we focus on the case of  $X_{14}$  Fano threefolds.

## $X_{14}$ Fano threefolds

**Definition.** A  $X_{14}$  Fano threefold X is a Picard rank 1 (Pic(X) =  $\mathbb{Z}$ ), index 1 ( $K_X = \mathcal{O}_X(-H)$ ), degree 14  $(K_X^3 = -14)$  Fano  $(-K_X$  is ample) threefold.

From now on, let X be a  $X_{14}$  Fano threefold, with H denoting its polarisation.

**Definition.** Let  $\mathcal{E}$  be the restriction of the tautological sub-bundle on Gr(2, 6). Define the **Kuznetsov component** of X to be

 $\mathcal{K}u(X) := \langle \mathcal{E}, \mathcal{O}_X \rangle^{\perp}$  $= \{ C \in D^b(X) \mid \operatorname{Hom}^{\bullet}(D, C) = 0, \ D = \mathcal{E}, \mathcal{O}_X \}.$ It fits into the semiorthogonal decomposition  $D^b(X) =$  $\langle \mathcal{K}u(X), \mathcal{E}, \mathcal{O}_X \rangle.$ 

## **Bridgeland stability conditions**

Weak stability conditions. A weak stability condition on  $D^b(X)$  is a pair  $(Z, \mathcal{H})$  where Z:  $K_0(D^b(X)) \to \mathbb{C}$  is a weak stability function and  $\mathcal{H}$ is a heart of  $D^b(X)$ .

a.jacovskis@sms.ed.ac.uk

# **Brill–Noether theory for Kuznetsov components**

Augustinas Jacovskis (joint work with Zhiyu Liu and Shizhuo Zhang)

Stability conditions on  $\mathcal{K}u(X)$ . To construct Bridgeland stability conditions on  $\mathcal{K}u(X)$ , take a tilt stability condition on  $D^b(X)$  (an example of a weak stability condition), tilt again and then restrict to  $\mathcal{K}u(X).$ 

Moduli spaces After fixing a Bridgeland stability condition  $\sigma$  on  $\mathcal{A}_X$  and a class v in the numerical Grothendieck group of  $\mathcal{A}_X$ , one can consider moduli spaces  $\mathcal{M}_{\sigma}(\mathcal{A}_X, v)$  of  $\sigma$ -stable objects in  $\mathcal{A}_X$ .

#### $\mathcal{K}u(X)$ in the $X_{14}$ case

By [2], there are birationally equivalent but nonisomorphic  $X_{14}$  Fano threefolds with equivalent Kuznetsov components, so the natural question in this case becomes:

#### Main question

What is the extra data along with  $\mathcal{K}u(X)$  required to determine a  $X_{14}$  Fano threefold up to isomorphism?

## The extra data

We claim that this **extra data** is a certain projection of the vector bundle  $\mathcal{E}$  into  $\mathcal{K}u(X)$ .

#### Lemma

Consider the subcategory  $\mathcal{D} := \langle \mathcal{K}u(X), \mathcal{E} \rangle \subset D^b(X)$ , the inclusion  $i : \mathcal{K}u(X) \hookrightarrow \mathcal{D}$ , and the right adjoint  $i^!$  of i. We have

$$i^{!}(\mathcal{E}) = \mathcal{L}_{\mathcal{E}}\mathcal{Q}(-H)[1]$$

where  $\mathcal{Q}$  is the restriction of the tautological quotient bundle on Gr(2,6). The object  $i^!(\mathcal{E})$  is a two-term complex, and it is stable with respect to Bridgeland stability conditions on  $\mathcal{K}u(X)$ .

## The idea

Recover X as a Brill–Noether (BN) locus inside  $\mathcal{M} := \mathcal{M}_{\sigma}(\mathcal{K}u(X), [\operatorname{pr}(\mathcal{O}_x)[-1]])$ where  $\sigma$  is a stability condition on  $\mathcal{K}u(X)$  and pr =  $L_{\mathcal{E}}L_{\mathcal{O}_X}: D^b(X) \to \mathcal{K}u(X)$  is the projection.



The **key point** is that this BN locus will be determined by  $\mathcal{K}u(X)$  and the extra data  $i^!(\mathcal{E})$ , hence it will follow that X is determined precisely by  $\mathcal{K}u(X)$ along with  $i^!(\mathcal{E})$ .





Via mutation computations, one can show that there is a triangle

## To do

- Show that  $X \subset \mathcal{M}$
- Show that the points parametrising X are the only ones in  $\mathcal{M}$  with a certain number of morphisms to a certain object, i.e. show X is a BN locus.

## Showing that $X \subset \mathcal{M}$

- The projection functor pr :  $D^b(X) \to \mathcal{K}u(X)$  is Fourier-Mukai, so pr  $\cong \Phi_G$ . We can define
- $\Phi_G \times \operatorname{id}_X := \Phi_{G \boxtimes \mathcal{O}_{\Delta_X}} : D^b(X \times \mathcal{X}) \to \mathcal{K}u(X \times \mathcal{X}).$ If  $\mathcal{I}$  is the universal ideal sheaf on  $X \times \mathcal{X}$ , then  $\Phi_{G \boxtimes \mathcal{O}_{\Delta_{Y}}}(\mathcal{I})$  is a family of ideal sheaves on X parametrised by  $\mathcal{X}$  which gives the **existence of a** morphism

 $p: \mathcal{X} \cong X \to \mathcal{M}.$ 

#### Lemma

For  $x \in X$ , p(x) is identified with  $pr(\mathcal{O}_x)[-1] \in$  $\mathcal{M}$ , and there is an embedding  $p: X \hookrightarrow \mathcal{M}$  induced by pr.

Idea of proof. The key things to show are:

- The (shifted) projections of skyscrapers are  $\sigma$ -stable.
- $p(x) \neq p(y)$ , i.e.  $\operatorname{pr}(\mathcal{O}_x) \ncong \operatorname{pr}(\mathcal{O}_y)$  for  $x \neq y$ . • The map on tangent spaces  $dp: T_x X \to T_{p(x)} \mathcal{M}$ induced by pr is well-defined and injective for all x.

## Exhibiting X as a BN locus

 $\mathcal{E}^{\oplus 4} \to I_x \to i^*(I_x) \to \mathcal{E}^{\oplus 4}[1]$ where  $i^*$  is the right adjoint to  $i : \mathcal{K}u(X) \hookrightarrow \mathcal{D}$ .

to  $i^{!}(\mathcal{E})[1]$ .



Let X and X' be  $X_{14}$  Fano threefolds, and let  $i^!(\mathcal{E})$  and  $i'^!(\mathcal{E}')$  be the associated extra data objects. Suppose that we have an equivalence  $\Phi$ :  $\mathcal{K}u(X) \simeq \mathcal{K}u(X')$  along with the isomorphism  $\Phi(i^!(\mathcal{E})) \cong i'^!(\mathcal{E}')$ . Then  $X \cong X'$ .

Acknowledgements: It's my pleasure to thank Arend Bayer for very helpful discussions regarding this work. I am supported by ERC Consolidator Grant WallCrossAG, no. 819864.



- Note that  $i^*(I_x) = \operatorname{pr}(\mathcal{O}_X)[-1]$ , and that  $i^*(I_x)$  has four morphisms to  $\mathcal{E}[1]$ . Also note that
  - $\operatorname{Hom}_{\mathcal{D}}(i^*I_x, \mathcal{E}[1]) \cong \operatorname{Hom}_{\mathcal{K}u(X)}(i^*I_x, i^! \mathcal{E}[1])$
- so it's equivalent to consider the number of morphisms
- Question: Are the  $i^*(I_x)$ 's the only objects in  $\mathcal{M}$ which have 4 morphisms to  $i^!(\mathcal{E})[1]$ ?
- **Definition.** The **Brill–Noether locus** with respect to the extra data  $i^!(\mathcal{E})$  is given by
  - $\mathcal{BN} := \{ F \in \mathcal{M} \mid \hom(F, i^! \mathcal{E}[1]) = 4 \} \subset \mathcal{M}.$
- The answer to the above question is yes. In particular:

#### Theorem

We have  $X \cong \mathcal{BN}$ .

Idea of proof. Take  $F \in \mathcal{BN} \setminus X$  and get a contradiction. The contradiction stems from the fact that Fis the shift of a vector bundle.

## Corollary

#### References

[1] Marcello Bernardara, Emanuele Macrì, Sukhendu Mehrotra, and Paolo Stellari. A categorical invariant for cubic threefolds. Advances in Mathematics, 229(2):770–803, 2012. [2] Alexander Kuznetsov and Alexander Perry. Derived categories of Gushel–Mukai varieties. *Compositio Mathematica*, 154(7):1362–1406, 2018. [3] Augustinas Jacovskis, Zhiyu Liu, and Shizhuo Zhang. Brill–Noether theory for Kuznetsov components and refined categorical Torelli theorems for index one Fano threefolds. In preparation, 2022. [4] Arend Bayer, Martí Lahoz, Emanuele Macrì, and Paolo Stellari. Stability conditions on Kuznetsov components.

arXiv preprint arXiv:1703.10839, 2017.