Categorical Torelli theorems for Gushel–Mukai threefolds

Introduction

Question: Let X be a Fano threefold. Can $D^b(X)$ determine X up to isomorphism?

Answer: Yes, by Bondal–Orlov's reconstruction theorem.

Question

Can "less" data than the whole derived category $D^b(X)$ determine X up to isomorphism?

For some Fano threefolds, "less data" means the Kuznetsov component.

Example. For X a cubic threefold, an admissible subcategory of $D^b(X)$ called the Kuznetsov component $\mathcal{K}u(X)$ determines it up to isomorphism [1].

In this poster, we focus on the case of **ordinary** Gushel–Mukai (OGM) threefolds.

GM threefolds

Definition. A GM threefold X is a Picard rank 1, index 1, degree 10 (genus 6) Fano threefold. There are two classes:

- X are quadric sections of a codimension 2 linear section of a Plücker embedded $\operatorname{Gr}(2,5) \subset \mathbb{P}^9$ (**OGM** threefolds) or;
- $X \xrightarrow{2:1} Y_5$ ramified in a quadric, where Y_5 is a codimension 3 linear section of a Plücker embedded $Gr(2,5) \subset \mathbb{P}^9$ (special GM threefolds).

From now on, let X be an OGM threefold, with Hdenoting its polarisation.

Definition. Let \mathcal{E} be the restriction of the tautological sub-bundle on Gr(2,5). Define the (alternative) **Kuznetsov component** of X to be

 $\mathcal{A}_X := \langle \mathcal{O}_X, \mathcal{E}^{\vee} \rangle^{\perp}$ $= \{ C \in \mathcal{D}^b(X) \mid \operatorname{Hom}^{\bullet}(D, C) = 0, \ D = \mathcal{O}_X, \mathcal{E}^{\vee} \}.$ It fits into the semiorthogonal decomposition $D^b(X) =$ $\langle \mathcal{A}_X, \mathcal{O}_X, \mathcal{E}^{\vee} \rangle.$

Augustinas Jacovskis (joint work with Xun Lin, Zhiyu Liu and Shizhuo Zhang)

Bridgeland stability conditions

Weak stability conditions. A weak stability condition on $D^b(X)$ is a pair (Z, \mathcal{H}) where Z: $K_0(D^b(X)) \to \mathbb{C}$ is a weak stability function and \mathcal{H} is a heart of $D^b(X)$.

Stability conditions on \mathcal{A}_X . To construct Bridgeland stability conditions on \mathcal{A}_X , take a tilt stability condition on $D^b(X)$ (an example of a weak stability condition), tilt again and then restrict to \mathcal{A}_X .

Moduli spaces After fixing a Bridgeland stability condition σ on \mathcal{A}_X and a class v in the numerical Grothendieck group of \mathcal{A}_X , one can consider moduli spaces $\mathcal{M}_{\sigma}(\mathcal{A}_X, v)$ of σ -stable objects in \mathcal{A}_X .

Details can be found in [2].

\mathcal{A}_X in the OGM case

By [3], there are birationally equivalent but non-isomorphic OGM threefolds with equivalent Kuznetsov components, so the natural questions in this case become:

Main questions

- Does \mathcal{A}_X determine the birational equivalence class of X?
- What is the extra data along with \mathcal{A}_X required to isolate an OGM from its birational equivalence class?

The extra data

We claim that this **extra data** is a certain projection of the vector bundle \mathcal{E} into $\mathcal{K}u(X)$, an equivalent version of \mathcal{A}_X (fitting in $D^b(X) = \langle \mathcal{K}u(X), \mathcal{E}, \mathcal{O}_X \rangle$).

Lemma. ([4]) Consider the subcategory \mathcal{D} := $\langle \mathcal{K}u(X), \mathcal{E} \rangle \subset D^b(X)$, the inclusion $i : \mathcal{K}u(X) \hookrightarrow \mathcal{D}$, and the right adjoint $\pi := i^!$ of i. We have

 $\pi(\mathcal{E}) = \mathcal{L}_{\mathcal{E}}\mathcal{Q}(-H)[1]$

where \mathcal{Q} is the restriction of the tautological quotient bundle on Gr(2,5). The object $\pi(\mathcal{E})$ is a two-term complex, and it is stable with respect to Bridgeland stability conditions on $\mathcal{K}u(X)$.

Proof. By the theorem above,

Refined categorical Torelli

Consider the projection pr := $L_{\mathcal{O}_X} L_{\mathcal{E}^{\vee}}$: $D^b(X) \to$ \mathcal{A}_X , and let $C \subset X$ denote a conic.

Lemma. ([4])

• When $h^0(\mathcal{E}|_C) = 0$, we have $\operatorname{pr}(I_C) = I_C$. • When $h^0(\mathcal{E}|_C) = 1$, the projection sits in the triangle

$$\mathcal{E}[1] \to \operatorname{pr}(I_C) \to \mathcal{Q}^{\vee},$$

and there is a \mathbb{P}^1 of such conics in $\mathcal{C}(X)$, the Hilbert scheme of conics on X. Denote this \mathbb{L} .

• In both of the above cases $pr(I_C)[1]$ is stable with respect to Bridgeland stability conditions on \mathcal{A}_X .

Remark. Under the standard equivalence Ξ : $\mathcal{K}u(X) \simeq \mathcal{A}_X$, we have the identification $\Xi(\pi(\mathcal{E})) \cong$ $\operatorname{pr}(I_C)[1]$, in the case when $h^0(\mathcal{E}|_C) = 1$.

Theorem. ([4]) The functor pr produces an irreducible component $\mathcal{S} := p(\mathcal{C}(X))$ in $\mathcal{M}_{\sigma}(\mathcal{A}_X, -x)$, where x is the numerical class of $pr(I_C)$ and p: $\mathcal{C}(X) \to \mathcal{S}$ is a blow-down morphism contracting \mathbb{L} to the smooth point associated to $\pi(\mathcal{E})$. In particular, \mathcal{S} is isomorphic to the minimal model $\mathcal{C}_m(X)$ of $\mathcal{C}(X)$. Furthermore, the irreducible component $\mathcal{C}_m(X)$ is the whole moduli space $\mathcal{M}_{\sigma}(\mathcal{A}_X, -x)$.

Corollary

The data $(\mathcal{K}u(X), \pi(\mathcal{E}))$ determines X up to isomorphism ([4]).

 $\mathcal{M}_{\sigma}(\mathcal{A}_X, -x) \cong \mathcal{C}_m(X).$

Blowing up $\mathcal{C}_m(X)$ at the point associated to $\pi(\mathcal{E})$ gives $\mathcal{C}(X)$, and by Logachev's reconstruction theorem X is recovered up to isomorphism from $\mathcal{C}(X)$.

Birational categorical Torelli

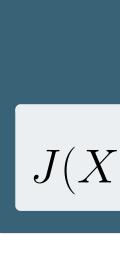
Theorem

Suppose we have an equivalence $\mathcal{A}_X \simeq \mathcal{A}_{X'}$. Then X is birational to X' ([4]).

where $M_G(2, 1, 5)$ is a Gieseker moduli space with the given Chern classes. So an equivalence $\mathcal{A}_X \simeq \mathcal{A}_{X'}$ sends -x to either itself or y - 2x, and so gives rise to either $\mathcal{C}_m(X) \cong \mathcal{C}_m(X')$, or $\mathcal{C}_m(X) \cong M_G^{X'}(2, 1, 5)$. Results of [5] then imply that X is a certain birational transform of X' associated to either lines or conics.

Period maps for OGM threefolds

If \mathcal{P}_{cat} : $\mathcal{X} \to \{\mathcal{K}u\}/\sim denotes a$ "categorical **period map**", then a corollary of the above theorem is that (|4|)



Acknowledgements: It's my pleasure to thank Arend Bayer for very helpful discussions regarding this work. I am supported by ERC Consolidator Grant WallCrossAG, no. 819864.

- [1] Marcello A catego Advanc
- [2] Arend B Stabilit arXiv p
- [3] Alexand Derived Compo
- [4] Augusti Hochsch In prep
- [5] Olivier On the
- J. Algebraic Geom, 21(1):21–59, 2012.

Idea of proof. The other numerical (-1)-class of \mathcal{A}_X is y - 2x, and one can show that

 $\mathcal{M}_{\sigma}(\mathcal{A}_X, y - 2x) \cong M_G^X(2, 1, 5)$

 $\mathcal{P}_{\text{cat}}^{-1}(\mathcal{A}_X) \cong \mathcal{C}_m(X)/\iota \cup M_G^X(2,1,5)/\iota'.$

In [5], the authors (DIM) conjecture that the classical period map \mathcal{P} : $\mathcal{X} \to \mathcal{J}$ has fibers of the form $\mathcal{P}^{-1}(J(X)) = \mathcal{C}_m(X)/\iota \cup M/\iota'$ where J(X) is the intermediate Jacobian and M is a surface birationally equivalent to $M_G^X(2, 1, 5)$. By our description of $\mathcal{P}_{cat}^{-1}(\mathcal{A}_X)$, the DIM conjecture is equivalent to the following conjecture (in [4], we prove an **infinitesimal version** of this conjecture):

Conjecture

J(X) determines $\mathcal{K}u(X)$.

References

o Bernardara, Emanuele Macrì, Sukhendu Mehrotra, and Paolo Stellari. Forical invariant for cubic threefolds. Sees in Mathematics, 229(2):770–803, 2012.
Bayer, Martí Lahoz, Emanuele Macrì, and Paolo Stellari. y conditions on Kuznetsov components. preprint arXiv:1703.10839, 2017.
der Kuznetsov and Alexander Perry. categories of Gushel–Mukai varieties. <i>sitio Mathematica</i> , 154(7):1362–1406, 2018.
nas Jacovskis, Xun Lin, Zhiyu Liu, and Shizhuo Zhang. nild cohomology and categorical Torelli theorems for Gushel–Mukai threefolds. <i>Paration</i> , 2021.
Debarre, Atanas Iliev, and Laurent Manivel. period map for prime fano threefolds of degree 10.