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Abstract. Let Y admit a rectangular Lefschetz decomposition of its derived category, and
consider a cyclic cover X → Y ramified over a divisor Z . In a setting not considered by
Kuznetsov and Perry [KP17], we define a subcategory AZ of the equivariant derived category
of X which contains, rather than is contained in, Db(Z). We then show that the equivariant
category of the Kuznetsov component of X is decomposed into copies of AZ .

As an application, we relate AZ with the cohomology of Z under some numerical as-
sumptions. In particular, we obtain categorical Torelli theorems for the lowest degree prime
Fano threefolds of index 1 and 2.

1. Introduction

In [Kuz09], Kuznetsov systematically studies derived categories of Fano threefolds and
subcategories – known as Kuznetsov components – arising as orthogonal complements to
exceptional collections. These categories are linked to questions of rationality [Kuz10],
stability conditions [BLMS23] and to hyperkähler geometry through moduli spaces [LPZ23],
as well as questions in birational geometry and Hodge theory [Per22].

In this paper, we start from a variety Y admitting a sheafOY (1) and a rectangular Lefschetz
decomposition of Db(Y ), i.e. an admissible subcategory B and a decomposition

Db(Y ) = ⟨B, . . . ,B(m− 1)⟩,
with B(i) the image of B under the equivalence − ⊗ OY (1). Examples of varieties with
rectangular decompositions are projective space, Grassmannians, some homogeneous spaces
(see [Kuz19, Section 4.1]). Another important case, also covered in this article, is when Y is
a Deligne–Mumford stack, for example a weighted projective space. Then, we consider an
n-fold cover X of Y , ramified along a divisor Z ∈ |OY (nd)|. The derived category Db(X)
has a semiorthogonal decomposition

Db(X) = ⟨AX ,BX , . . . ,BX(M − 1)⟩
where BX is the pullback of B under the covering map, and M := m − (n − 1)d. The
action of µn on X by the covering involution restricts to one on AX , giving rise to the
Kuznetsov component Aµn

X ⊂ Db(X)µn . This is the same setting of [KP17], with the crucial
difference that we work in the range 0 < M < d, rather than d ≤ M . The former
corresponds to allowing more positivity for Z (see Section 3.3). In [KP17], Db(Z) also
admits a Kuznetsov component AZ , and A

µn

X decomposes into copies of AZ . We define
a subcategory AZ ⊂ Db(X)µn which contains, rather than is contained in, Db(Z) (see
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(3.2)), and in our first main result we exhibit a semiorthogonal decomposition for Aµn

X with
components AZ .

Theorem 1.1 (= Theorem 3.4). Assume that we are in the situation above, and that 0 <
M < d. Then there are fully faithful functors Φj : AZ → A

µn

X , with j = 0, . . . , n− 2, and a
semiorthogonal decomposition:

A
µn

X = ⟨Φ0(AZ), . . . ,Φn−2(AZ)⟩ ⊂ Db(X)µn .

In the next part of the paper, we study the topological K-theory of AZ , and its associated
Hodge structure. For this, we use Blanc’s topological K-theory for categories [Bla16] and
the non-commutative Hodge theory methods of [Per22] and [HLP20], slightly extending
their results to admissible subcategories of global quotient DM stacks (Proposition 4.2).

We apply this to the case of very general three-dimensional double covers of weighted pro-
jective space. Here, we can make a direct comparison between Ktop

0 (AZ) and H∗(Z,Z), and
show that primitive cohomology of Z coincides with the part K0(A

µ2

X )⊥ of the topological
K-theory of Aµ2

X which is orthogonal to the algebraic classes.

Proposition 1.2 (= Proposition 5.5). Suppose that X is a very general prime double cover of
weighted projective three-dimensional space, with 0 < M ≤ d. Then K0(A

µ2

X )⊥ is equipped
with a Hodge structure such that the Chern character map induces a Hodge isometry

K0(A
µ2

X )⊥ ≃ H2
prim(Z,Z).

A landmark theorem by Bondal–Orlov [BO01] states that the derived category of a Fano
variety X determines X up to isomorphism. This justifies the question of whether AX

suffices to determine X . When this is the case we say that a categorical Torelli theorem holds
for X . Motivated by these questions, we apply Proposition 1.2 to reconstruct primitive
cohomology from categorical equivalences:

Theorem 1.3 (= Theorem 5.6). Let X and X ′ be prime double covers of a weighted projective
three-dimensional space, with X very general, d = d′ and 0 < M ≤ d. A Fourier–Mukai type
equivalence Φµ2 : Aµ2

X → A
µ2

X′ induces a Hodge isometry

H2
prim(Z,Z) ≃ H2

prim(Z
′,Z).

Combining Theorem 1.3 with Hodge-theoretic Torelli theorems [Don83, Sai86], we prove
new categorical Torelli theorems for two families of prime Fano threefolds, namely for
threefolds X2 of index 1 and genus 2, and for threefolds Y1 of index 2 and degree 1. In
the case of Y1, known as the Veronese double cone, we impose a natural condition on the
equivalence (we comment on this in Section 1.1). This was the only remaining open case for
index 2.

Theorem 1.4 (= Theorem 6.4). Let X,X ′ be index 1, genus 2 prime Fano threefolds, with X
very general. Suppose there is a Fourier–Mukai type equivalence of Kuznetsov components
AX ≃ AX′ . Then X ≃ X ′.

Theorem 1.5 (= Theorem 6.5). Let X,X ′ be Veronese double cones with X very general.
Suppose that we have an equivalence Φ: AX

∼−→ AX′ of Fourier–Mukai type which commutes
with the covering involution. Then X ≃ X ′.

Our methods also allow us to reprove categorical Torelli for quartic double solids, i.e.
prime Fano threefolds of index 2 and degree 2 (see Theorem 6.7).
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1.1. Related works. If we compare Theorem 1.1 and [KP17, Theorem 1.1] in the case where
the base Y is weighted projective space, we observe that the cases 0 < M < d, M = d, and
M > d correspond to the branch divisor Z being canonically polarized, K-trivial, or Fano
(see Section 3.3). This is parallel to the trichotomy evidenced by Orlov [Orl09, Theorem
3.11] and suggests a relation between AZ and categories of matrix factorizations in the
hypersurface setting.

In the case of hypersurfaces, Hirano and Ouchi proved a result analogous to Theorem 1.1
in the language of matrix factorizations [HO23, Theorem 5.6]. From a similar perspective,
the remarkable paper [BFK14] investigates Hodge theoretic applications of the language
of matrix factorizations. The same philosophy was recently applied to prove categorical
Torelli theorems for hypersurfaces in Pn [LZ23, Theorem 1.3]. A modification of this also
applies to X2, regarded as a sextic hypersurface in P(1, 1, 1, 1, 3) [LZ23, Theorem 6.1]. The
upcoming work [LPS23] treats this case with independent methods.

Categorical Torelli theorems have been studied for many varieties. We direct the reader to
[PS23] for a survey. One possible approach to proving such theorems is to recover the Fano
threefold from Bridgeland moduli spaces, as in [BMMS12, APR22, PY22, BBF+22, FLZ23]
(for prime Fano threefolds of index 2 and degree ≥ 2) and [JLLZ21, JLZ22] (for prime Fano
theefolds of index 1 and genus ≥ 6). These methods use the fact that there is a unique
G̃L

+

2 (R)-orbit of Serre invariant stability conditions to show that any equivalence preserves
moduli spaces of stable objects. However, for the Veronese double cone and lower genus
index 1 Fano threefolds, it is not known (or even false, e.g. genus 4 [KP21, Corollary 1.9])
that such a unique orbit exists. Methods relating Hochschild cohomology and Hodge theory
are developed in [HR19] and [Pir22] to prove categorical Torelli theorems for broad classes
of hypersurfaces.

In [JLLZ21], a categorical Torelli theorem for special Gushel–Mukai threefoldsX is shown
by using the fact that the equivariant Kuznetsov component ofX is equivalent (by [KP17]) to
the derived category of the K3 surface that X is ramified in. Because derived equivalent K3
surfaces of this type have only one trivial Fourier–Mukai partner, the ramification divisors
are isomorphic, hence the special Gushel–Mukai threefolds are isomorphic.

The additional assumption in Theorem 1.5 is equivalent to requiring that the equivalence
Φ commutes with the rotation functor R(−) = LO(−⊗ OX(1)), also called the degree-shift
functor in [HR19] (see Remark 6.6). This assumption is natural: for example, it is necessary
for a categorical Torelli theorem for cubic fourfolds [HR19, Corollary 1.2]. In fact, some
special cubic fourfolds have non-trivial Fourier–Mukai partners, i.e. non-isomorphic cubic
fourfolds sharing equivalent Kuznetsov components. In [Huy17, Section 3.2], Huybrechts
showed that the number of (isomorphism classes of) Fourier–Mukai partners is finite, and
that a very general cubic fourfold has no non-trivial Fourier–Mukai partners. The articles
[Per21, FL23] study counts of Fourier–Mukai partners of a cubic fourfold. Inspired by these
results, and by a question of Huybrechts [MS19, Question 3.25], we formulate the following
question.

Question 1.6.

(1) Do Veronese double cones have non-trivial Fourier–Mukai partners?
(2) Do very general Veronese double cones have non-trivial Fourier–Mukai partners?
(3) If (1) has a positive answer, then how many Fourier–Mukai partners are there up to

isomorphism, and are they birational to one another?

Structure of the paper. After recalling some preliminaries and fixing notations in Section
2, we dedicate Section 3 to the study of semiorthogonal decompositions for cyclic covers
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and the proof of Theorem 1.1. Section 4 is dedicated to topological K-theory and non-
commutative Hodge theory. We apply these tools to the threefold setting in Section 5. The
last section (Section 6) contains the categorical Torelli theorems.

Notation and conventions. We work over the field of complex numbers C. Whenever we
work with an arbitrary triangulated category C, it will be assumed to be proper and C-linear.
For a projective variety (or a proper DM stack) X , we write D(X) (resp. Db(X), Dperf(X))
for the derived category of (bounded, perfect) complexes of coherent sheaves on X .

Acknowledgements. We thank Arend Bayer, Pieter Belmans, Wahei Hara, Alex Perry,
and Sebastian Schlegel Mejia for helpful discussions. We thank Laura Pertusi, Paolo Stellari,
and Shizhuo Zhang for informing us about their work on similar topics.

2. Preliminaries on derived categories

For background on triangulated categories and derived categories, we recommend [Huy06].
Throughout this section, C is a triangulated category. For objects E,F ∈ C, define

Hom•
C(E,F ) :=

⊕
t∈Z

ExttC(E,F )[−t].

We will omit the Hom subscripts when the category we are working in is clear from context.

Definition 2.1. An object E ∈ C is called exceptional if Hom•(E,E) = C.

Definition 2.2. We say C = ⟨A1, . . . ,An⟩ is a semiorthogonal decomposition of C if
(1) Hom•(F,G) = 0 for all F ∈ Ai, G ∈ Aj if i > j;
(2) for any F ∈ C, there exists a sequence of morphisms

0 = Fn → Fn−1 → · · · → F1 → F0 = F

such that Cone(Fi → Fi−1) ∈ Ai.

Let i : A ↪→ C be a full triangulated subcategory. If the inclusion i has a left adjoint i∗,
then A is called left admissible. If i has a right adjoint i!, then A is called right admissible. If
both adjoints exist, then A is called admissible.

Define the right orthogonal A⊥ to A to be the subcategory
A⊥ := {F ∈ C | Hom•(G,F ) = 0 for allG ∈ A}.

Similarly, define the left orthogonal ⊥A to A to be the subcategory
⊥A := {F ∈ C | Hom•(F,G) = 0 for allG ∈ A}.

Let i : A ↪→ C be an admissible subcategory. Let i∗ and i! be the left and right adjoint,
respectively. For any F ∈ C, we define the left mutation functor LA(F ) by the triangle

ii!(F ) → F → LA(F ). (2.1)
Similarly, we define the right mutation functor RA(F) by the triangle

RA(F ) → F → ii∗(F ). (2.2)
In particular, when A is an exceptional object E, these triangles become

Hom•(E,F )⊗ E → F → LE(F ), (2.3)
and

RE(F ) → F → Hom•(F,E)∨ ⊗ E, (2.4)
respectively.
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Proposition 2.3. Let C = ⟨C1,C2⟩ be a semiorthogonal decomposition and let SC be the Serre
functor of C. Then

C ≃ ⟨SC(C2),C1⟩ ≃ ⟨C2, S
−1
C (C1)⟩

are also semiorthogonal decompositions.

Proposition 2.4. Let C = ⟨C1,C2⟩. Then

S−1
C1

= LC2 ◦ S−1
C and SC2 = RC1 ◦ SC.

2.1. Equivariant triangulated categories. The definitions of a group action on a category
and the corresponding equivariant category are due to Deligne [Del97]. The following
background can be found in [KP17, Section 3], which we follow. Let G be a finite group and
C a triangulated category.

Definition 2.5. A (right) action of G on C is given by the following data:
(1) for each g ∈ G, an autoequivalence g∗ : C → C;
(2) for each pair g, h ∈ G, a natural isomorphism cg,h : (gh)

∗ ∼−→ h∗ ◦ g∗ such that

(fgh)∗ h∗ ◦ (fg)∗

(gh)∗ ◦ f ∗ h∗ ◦ g∗ ◦ f ∗

cfg,h

cf,gh

cg,hf
∗

h∗cf,g

commutes for all f, g, h ∈ G.

Definition 2.6. A G-equivariant object of C is a pair (F, ϕ) consisting of an object F ∈ C

and a collection of isomorphisms ϕg : F
∼−→ g∗(F ) for all g ∈ G such that the diagram

F h∗(F ) h∗(g∗(F ))

(gh)∗(F )

h∗(ϕg)

cg,h(F )ϕgh

ϕh

commutes for all g, h ∈ G. The isomorphisms ϕ = {ϕg}g∈G are called the G-linearisation.
The G-equivariant category CG of C is the category whose objects are the G-equivariant
objects of C, and morphisms are those between G-invariant objects of C that commute with
the G-linearisations.

Example 2.7 ([Ela14, p. 12]). Suppose G is a finite abelian group. Let Ĝ = Hom(G,C×) be
the group of irreducible representations of G. Then there is an action of Ĝ on CG given as
follows. For every ρ ∈ Ĝ, we have an autoequivalence

ρ∗(F, (ϕh)) := (F, (ϕh))⊗ ρ := (F, (ϕh · ρ(h))).

For ρ1,ρ2 ∈ Ĝ, the equivariant objects ρ∗1ρ∗2(F, (ϕh)) and (ρ2 ◦ ρ1)∗(F, (ϕh)) are the same,
hence we set the isomorphisms cρ2,ρ1 to be the identities.

Theorem 2.8 ([Ela12, Theorem 6.3], [Ela14, Proposition 3.11], [KP17, Theorem 3.2]). Let X
be a quasi-projective variety with an action of a finite group G. Suppose we have a semiorthog-
onal decomposition Db(X) = ⟨A1, . . . ,An⟩ where g∗Ai ⊂ Ai for all g ∈ G. Then the
G-equivariant category has the following semiorthogonal decomposition

Db(X)G = ⟨AG
1 , . . . ,A

G
n ⟩.

Definition 2.9. An action ofG on C is called trivial if for each g ∈ G there is an isomorphism
of functors, τg : id

∼−→ g∗, such that cg,h ◦ τgh = h∗τg ◦ τh for all g, h ∈ G.
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Proposition 2.10 ([KP17, Proposition 3.3]). Let G be a finite group acting trivially on
a triangulated category C. Then CG is also triangulated. Let ρ0, . . . , ρn be the irreducible
representations of G. Then there is a completely orthogonal1 decomposition

CG = ⟨C⊗ ρ0, . . . ,C⊗ ρn⟩.

In the situation of Proposition 2.10, we define the functors

ιk : C → CG, F 7→ F ⊗ ρk; (2.5)
πk : C

G → C, F 7→ F ⊗C[G] ρ
∨
k . (2.6)

The functors πk are both left and right adjoint to ιk.

3. Cyclic covers and semiorthogonal decompositions

3.1. Cyclic covers and rectangular Lefschetz decompositions. In this section we follow
the notation of [KP17]. Let Y be an algebraic variety (or a proper Deligne–Mumford (DM)
stack). Consider f : X → Y , the degree n cyclic cover of Y ramified over a divisor Z .
Denote by j : Z ↪→ X the embedding of Z as the ramification divisor.

Let µn denote the group of n-th roots of unity. This has dual group µ̂n := Hom(µn,C
×) ≃

Z/n. This isomorphism is given by the primitive character χ : µn → C×. Each irreducible
representation ρi of µn corresponds to χi.

We consider the trivial action of µn on Y . Then f is µn-equivariant, and induces the
following functors between equivariant derived categories:

f ∗
k : D

b(Y )
ιk−→ Db(Y )µn

f∗
−→ Db(X)µn ,

fk∗ : D
b(X)µn

f∗−→ Db(Y )µn
πk−→ Db(Y ),

f !
k : D

b(Y )
ιk−→ Db(Y )µn

f !

−→ Db(X)µn .

Note that f ∗
k is left adjoint to fk∗, and f !

k is right adjoint to fk∗. Similarly, define the functors
j∗k , jk∗, j

!
k as the compositions

j∗k : D
b(X)µn

j∗−→ Db(Z)µn
πk−→ Db(Z),

jk∗ : D
b(Z)

ιk−→ Db(Z)µn
j∗−→ Db(X)µn ,

j∗k : D
b(X)µn

j!−→ Db(Z)µn
πk−→ Db(Z).

Also note that j∗k is left adjoint to jk∗, and j!k is right adjoint to jk∗.

Theorem 3.1 ([KP17, Theorem 4.1]). For each k ∈ Z/n, the functors f ∗
k and jk∗ are fully

faithful. Moreover, there is a semiorthogonal decomposition

Db(X)µn = ⟨f ∗
0D

b(Y ), j0∗D
b(Z), . . . , jn−2∗D

b(Z)⟩.

Now additionally assume that Y has a rectangular Lefschetz decomposition, i.e. assume
that there is a line bundle OY (1) and an admissible subcategory B ⊂ Db(Y ) such that

Db(Y ) = ⟨B,B(1), . . . ,B(m− 1)⟩

is a semiorthogonal decomposition, where B(t) := B ⊗ OY (t). Assume moreover that
Z ∈ |OY (nd)|, where n, d are positive integers satisfying 0 < m − (n − 1)d =: M . Then

1Meaning the Homs vanish in both directions.
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[KP17, Lemma 5.1] applies, hence f ∗ is fully faithful and Db(X) has the semiorthogonal
decomposition

Db(X) = ⟨AX ,BX , . . . ,BX(M − 1)⟩, (3.1)
where BX := f ∗B. We call AX = ⟨BX , . . . ,BX(M − 1)⟩⊥ the Kuznetsov component.

For subsets T ⊂ Z and S ⊂ Z/n, define
BS

X(T ) := ⟨BX(t)⊗ ρk⟩t∈T,k∈S ⊂ Db(Y )µn .

Proposition 3.2. We have the following semiorthogonal decomposition,

Db(X)µn = ⟨Aµn

X ,B
[0,n−1]
X ([0,M − 1])⟩.

Proof. Each piece of the semiorthogonal decomposition (3.1) is preserved by the action
of µn. Thus, by Theorem 2.8 the action of µn distributes through the semiorthogonal
decomposition. Furthermore, since the action of µn is trivial on each piece BX(i), we get
BX(i)

µn = B
[0,n−1]
X (i) by Proposition 2.10. The result follows. □

We also state a useful lemma which we will use in the next section.

Lemma 3.3 ([KP17, Lemma 6.1]). For any twist t ∈ Z and weight k ∈ Z/n we have

Rjk∗Db(Z)(B
k
X(t)) = Bk+1

X (t− d).

3.2. A semiorthogonal decomposition of Aµn

X . For this section, assume moreover that
0 < M < d. Before stating the main theorem, let us set up some more notation. Define the
functor Φk : D

b(X)µn → Db(X)µn for 0 ≤ k ≤ n− 2 as
Φk(−) := L

B
[0,k]
X ([0,M−1])

(−⊗ ρk).

Furthermore, define the subcategory AZ of Db(X)µn as follows:
AZ := ⟨j0∗Db(Z),B1

X([M − d,−1])⟩. (3.2)

Theorem 3.4. Let X and Z be as in Section 3.1, with 0 < M < d. We have a semiorthogonal
decomposition,

A
µn

X = ⟨Φ0(AZ),Φ1(AZ), . . . ,Φn−2(AZ)⟩.

Remark 3.5. The results of [KP17] apply to the numerical range M ≥ d, while we work
with 0 < M < d. See Section 3.3 for a comparison between the results.

Proof. We follow the strategy of the proof in Section 6 of [KP17]. From Theorem 3.1, we
have the semiorthogonal decomposition

Db(X)µn = ⟨B0
X([0,m− 1]), j0∗D

b(Z), . . . , jn−2∗D
b(Z)⟩. (3.3)

Now rewrite the first component of the semiorthogonal decomposition above as
B0

X([0,m− 1]) = ⟨B0
X([0,M − 1]),B0

X([M,M + d− 1]),

B0
X([M + d,M + 2d− 1]), . . . ,B0

X([m− d,m− 1])⟩.
(3.4)

We next substitute the decomposition (3.4) into the semiorthogonal decomposition (3.3), and
iteratively apply right mutations together with Lemma 3.3. Then, as in [KP17], we get

Db(X)µn = ⟨B0
X([0,M − 1]), j0∗D

b(Z),B1
X([M − d,M − 1]), j1∗D

b(Z),

B2
X([M − d,M − 1]), . . . , jn−2∗D

b(Z),Bn−1
X ([M − d,M − 1])⟩.

(3.5)

Now we deviate from the proof in loc. cit. and use AZ as defined above. Since M < d,
Bk

X([M − d,M − 1]) = ⟨Bk
X([M − d,−1]),Bk

X([0,M − 1])⟩



8 H. DELL, A. JACOVSKIS, AND F. ROTA

for any weight k. Also, since j : Z → X is equivariant, jl∗(−)⊗ ρk = jl+k∗. Therefore, (3.5)
reads:

Db(X)µn = ⟨B0
X([0,M − 1]),

AZ ,B
1
X([0,M − 1]),

AZ ⊗ ρ1,B
2
X([0,M − 1]),

. . . ,

AZ ⊗ ρn−2,B
n−1
X ([0,M − 1])⟩.

(3.6)

We next apply left mutations and regroup as follows.
Db(X)µn = ⟨LB0

X([0,M−1])(AZ)),

LB0
X([0,M−1])LB1

X([0,M−1])(AZ ⊗ ρ1),

. . . ,

LB0
X([0,M−1])LB1

X([0,M−1]) · · ·LBn−2
X ([0,M−1])(AZ ⊗ ρn−2),

B0
X([0,M − 1]),B1

X([0,M − 1]), . . . ,Bn−1
X ([0,M − 1])⟩

= ⟨LB0
X([0,M−1])(AZ),

L
B

[0,1]
X ([0,M−1])

(AZ ⊗ ρ1), . . . ,

L
B

[0,n−2]
X ([0,M−1])

(AZ ⊗ ρn−2),B
[0,n−1]
X ([0,M − 1])⟩

= ⟨Φ0(AZ),Φ1(AZ), . . . ,Φn−2(AZ),B
[0,n−1]
X ([0,M − 1])⟩.

(3.7)

Since the right-hand sides of the semiorthogonal decomposition above and in Proposition
3.2 match up, the components to the left are equivalent. The statement of the theorem
follows. □

Corollary 3.6. Under the action of µ̂n ≃ Z/n on Db(X)µn , we have

AX = ⟨Φ0(AZ),Φ1(AZ), . . . ,Φn−2(AZ)⟩Z/n.

Proof. By [Ela14, Theorem 4.2], (Aµn

X )Z/n ≃ AX . The result then follows by Theorem 3.4. □

Example 3.7. Theorem 3.4 applies to the following classes of examples.
(1) The Veronese double cone Y1, defined as the double cover of P(1, 1, 1, 2) branched

over Z ∈ |OP(1,1,1,2)(6)|. This is a smooth prime Fano threefold of index 2 and degree
1. In this case, AZ = ⟨Db(Z),Db(pt)⟩. l

(2) The prime Fano threefold X2 of index 1 and genus 2, which is realized as a double
cover of P3 branched in a sextic. Then AZ = ⟨Db(Z),Db(pt),Db(pt)⟩.

Example 3.8 (The family X4 and smoothings of 1
4
(1, 1)). Consider a Fano threefold X

obtained as the double cover f : X → Q of a quadric hypersurface Q in P4 branched over
a section of OQ(2). The derived category of Q admits a strong full exceptional collection
Db(Q) = ⟨S ′,OQ,OQ(1),OQ(2)⟩, where S ′ is a spinor bundle on Q [Kap88]. This decom-
position is not rectangular. Hence, the present setting is not covered by the results of this
section. Nevertheless, we can apply the same methods and compare Aµ2

X and Db(Z). Denote
by C = ⟨S ′,OQ,OQ(1)⟩. By Theorem 3.1, and then arguing as in Lemma 3.3, we obtain a
decomposition

Db(X)µ2 = ⟨f ∗
0C,OX(2)⊗ ρ0, j0∗D

b(Z)⟩
= ⟨f ∗

0C, j0∗D
b(Z),OX ⊗ ρ1⟩.

(3.8)
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On the other hand, OX = f ∗OQ is exceptional by Kodaira vanishing. Let AX := ⟨OX⟩⊥,
so Db(X) = ⟨AX ,OX⟩. Proposition 3.2 then gives

Db(X)µ2 = ⟨Aµ2

X ,OX ⊗ ρ0,OX ⊗ ρ1⟩.

Comparing the two decompositions we obtain

⟨Aµ2

X ,OX ⊗ ρ0⟩ = ⟨f ∗
0C, j0∗D

b(Z)⟩. (3.9)

The above equality can be used to relate the K-theories of Aµ2

X and Db(Z) (see Remark 5.7).
There exists another family of double covers, i.e. double covers of P(1, 1, 1, 2) branched

over a sectionZ ofOP(1,1,1,2)(8), which can be equivalently regarded as quartic hypersurfaces
of P := P(1, 1, 1, 2, 4). Let X be one such hypersurface. If X is chosen to miss the points
[0 : 0 : 0 : 1 : 0] and [0 : 0 : 0 : 0 : 1], then X has two singularities 1

2
(1, 1, 1) in its

intersection with the line x0 = x1 = x2 = 0, and is smooth otherwise. Now consider
the canonical stack X associated to X : it has index M = 1 and by Theorem 3.4 there is a
semiorthogonal decomposition

A
µ2

X = ⟨Db(Z),Db(pt),Db(pt),Db(pt)⟩.

We point out that the family of threefolds X4 and that of hypersurfaces just constructed
admit a common degeneration as follows. It is well known that the cone over a rational
normal quartic curve, i.e. the plane P(1, 1, 4), has smoothings both to a Veronese surface and
to a quadric surface [Ste03, 14, Example 4]. Then, a cone over P(1, 1, 4) may be deformed
to a singular quadric threefold and to P(1, 1, 1, 2), which is a cone over a Veronese surface.
Thus, X4 may be degenerated to the double cover of a singular quadric, which in turn
degenerates to a cone over P(1, 1, 4).

3.3. Comparison to [KP17]. The article [KP17] works under the assumption M ≥ d.
If the inequality is strict, Db(Z) admits a Kuznetsov component and a decomposition as
follows. Let BZ be the essential image of the restriction along the inclusion Z ⊂ Y . Then

Db(Z) = ⟨AKP
Z ,BZ , . . . ,BZ(M − d− 1)⟩, (3.10)

where AKP
Z denotes here the right orthogonal, i.e. the Kuznetsov component of Db(Z), in

contrast with (3.2). If M = d, then Db(Z) = AKP
Z (see [KP17, Lemma 5.5]).

In [KP17, Theorem 1.1] the authors show that for M ≥ d the µn-equivariant Kuznetsov
component, Aµn

X , has a semiorthogonal decomposition into n− 1 copies of AKP
Z .

Theorem 3.4 shows that, when 0 < M < d, there exists a category AZ , defined as a
subcategory of Db(X)µn (see (3.2)), and a similar decomposition of Aµn

X . Observe that AZ

now contains Db(Z) as a semiorthogonal component.
Suppose Y is weighted projective space. Then Y has a rectangular Lefschetz decomposi-

tion with B = ⟨OY ⟩, and ωY ≃ OY (−m). By adjunction, ωZ ≃ OZ(nd −m),. Hence the
sign of nd−m = d−M determines whether Z is Fano, K-trivial, or canonically polarized.
The first two cases correspond to M ≥ d and are those considered in [KP17]. In summary,

d ≤M [KP17, Lemma 5.5]
=⇒ AKP

Z ↪→ Db(Z),

0 < M < d Section 3.2
=⇒ Db(Z) ↪→ AZ .

4. Eqivariant eqivalences and Hodge isometries

4.1. Cohomology of varieties and Hodge theory. Let X be a smooth projective variety
over C of dimension n. For all k, the singular cohomology group Hk(X,Z) carries a Hodge
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structure. The complexification Hk(X,C) decomposes as

Hk(X,C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) ≃ Hq(X,Ωp
X), for all p+ q = k ≥ 0. We have Hp,q(X) = Hq,p(X).

Singular cohomology has the structure of a commutative ring with cup product. The class
of a hyperplane section H of X induces the operation − ∪H : Hk(X,Z) → Hk+2(X,Z).
Then, primitive cohomology is defined as

Hn−k
prim(X,Z) := ker(− ∪Hk+1 : Hn−k(X,Z) → Hn+k+2(X,Z))

for all k. The Hodge structure on Hn−k(X,Z) restricts to one on Hn−k
prim(X,Z) [Voi07, II.6-7].

4.2. Topological K-theory. Our main references for topological K-theory are [Wei97]
and the papers [Bla16], [Per22, Section 5.1], and [HLP20, Section 2]. We collect the results
needed for this work below.

There is a lax monoidal functor

Ktop : CatC → Sp

from C-linear categories to the ∞-category of spectra, which satisfies the following proper-
ties.

Theorem 4.1 ([Bla16]).
(1) If C = ⟨C1, . . . ,Cm⟩ is a C-linear semiorthogonal decomposition, then there is an

equivalence
Ktop(C) ≃ Ktop(C1)⊕ . . .⊕Ktop(Cm), (4.1)

where the map Ktop(C) → Ktop(Ci) is induced by the projection functor to Ci.
(2) Let K(C), HN(C), and HP(C) denote algebraic K-theory, negative cyclic homology,

and periodic cyclic homology of C respectively. There is a functorial commutative square

K(C) HN(C)

Ktop(C) HP(C)

. (4.2)

(3) IfX is a proper complex variety, then there exists a functorial equivalenceKtop(Dperf(X)) ≃
Ktop(X), the complex K-theory spectrum of X . Under this equivalence, the left verti-
cal arrow in (4.2) recovers the usual inclusion of algebraic K-theory into topological
K-theory, and the bottom arrow coincides with the usual Chern character under the
identification of HP(Dperf(X)) with 2-periodic de Rham cohomology.

For C ∈ CatC and t an integer, write Ktop
t (C) = πt(K

top(C)). If in addition the category C

is proper, then for each integer t there is a bilinear Euler pairingχtop : Ktop
t (C)⊗Ktop

t (C) → Z
induced by the evaluation functor

Hom(−,−) : Cop ⊗Dperf(Spec(C)) C → Dperf(Spec(C)),

where Dperf denotes the category of perfect complexes. The Euler pairing satisfies the
following properties [Per22, Lemma 5.2]:

• The pairing is compatible with the inclusions of Ktop
t (Ci), and it makes (4.1) into a

semiorthogonal sum (i.e. χtop(vi, vj) = 0 for vi ∈ Ktop
t (Ci), vj ∈ Ktop

t (Cj), i > j);
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• when restricted to K0(C) via the inclusion in (4.2), χtop coincides with the usual
Euler pairing

χ(E,F ) =
∑
i∈Z

(−1)i dimHomi
C(E,F ).

• (Riemann–Roch) If C = Dperf(X), with X a proper complex variety, then for v, w ∈
Ktop

t (C) we have χtop(v, w) = p∗(v
∨ ⊗ w) ∈ Ktop

2t (Spec(C)) ≃ Z, with p : X →
Spec(C) the structure morphism.

Now we suppose C is an admissible subcategory of the derived category of a proper
smooth DM quotient stack, to leverage results on the non-commutative Hodge-to-de Rham
spectral sequence. We say that Ktop(C) carries a pure Hodge structure if every homotopy
group Ktop

t (C) carries a pure Hodge structure of weight −t.
Proposition 4.2. Let C be an admissible subcategory of Dperf(X ), for X = [X/G] a proper
smooth DM stack.

(1) Ktop(C) comes endowed with a canonical pure Hodge structure with graded pieces

grp(Ktop
t (C)C) ≃ HHt+2p(C), (4.3)

where HHt(C) denotes the t-th Hochschild homology group of C.
(2) For C = Dperf(X ), the Chern character induces an isomorphism of Hodge structures

Ktop
t (Dperf(X ))Q ≃

⊕
k∈Z

H2k−t(IX ,Q)(k), (4.4)

where IX denotes the (underived) inertia stack, and the summands on the right-hand
side are its de Rham cohomology groups.

(3) If X = X is a smooth proper complex variety, the summands in (4.4) coincide with
H2k−t(X,Q)(k), the k-th Tate twists of rational singular cohomology groups.

Proof. To prove these statements, we claim that the map Ktop(C)C → HP(C) in (4.2) is an
isomorphism (this is referred to as the lattice property for C), and that the non-commutative
Hodge-to-de Rham sequence degenerates for C (we say that C has the degeneration property).
Granting the claims, the degeneration property gives a canonical filtration of HPn(C) with
p-th graded piece HHn+2p(C), which together with the lattice property shows (1).

There are identifications HPt(Dperf(X )) ≃ ⊕k∈ZH
2k−t(IX ,Q) by [HLP20, Proposition

2.13], and HPt(Dperf(X)) ≃ H2k−t(X,Q) by [Wei97], under which the non-commutative
Hodge filtration coincides with the usual Hodge filtrations. This proves parts (2) and (3).

To establish the claims, observe first that they are preserved under direct summands
and arbitrary direct sums in the category of noncommutative motives (defined in [Tab08]).
Indeed, this holds for the lattice property because of the functoriality of (4.2), and for the
degeneration property by [HLP20, Lemma 1.22]. Therefore, it is sufficient to establish them
in the case C = Dperf(X ), for which they are proven, respectively, in [HLP20, Corollary
2.19] and [HLP20, Corollary 1.23]. □

4.3. Equivalences of Fourier–Mukai type induce Hodge isometries. Consider smooth
proper DM stacks that are global quotients, [Xj/Gj], for j = 1, 2. Fix admissible subcat-
egories i1 : K1 → Db(X1)

G1 and i2 : K2 → Db(X2)
G2 , and let i∗j denote the left adjoints

to the inclusions for j = 1, 2. Recall that an equivalence ϕ : K1 → K2 is said to be of
Fourier–Mukai type if the composition ψ : Db(X1)

G1 → Db(X2)
G2 given by

Db(X1)
G1

i∗1−→ K1
ϕ−→ K2

i2−→ Db(X2)
G2 (4.5)

is a Fourier–Mukai functor. Denote by (Ej, ej) a dg-enhancement for each Db(Xj)
Gj ,

which in turn induce enhancements (Fj, fj) for Kj . In this setting:
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Lemma 4.3. An equivalence ϕ : K1 → K2 of Fourier–Mukai type lifts to an equivalence of
dg-enhancements (F1, f1) → (F2, f2).

Proof. The Fourier–Mukai assumption means that the composition ψ in (4.5) is of Fourier–
Mukai type, whence it lifts to a functor Ψ: (E1, e1) → (E2, e2) (this is [Toë07, Theorem 8.9]
for schemes, and [Kün23, Corollary 3.7] for the equivariant version). Let idgj and i∗dgj denote
the dg-lifts of the inclusions and their left adjoint functors. Define Φ := i∗dg2 ◦Ψ ◦ idg1 . The
functor Φ: (F1, f1) → (F2, f2) lifts ϕ. In fact, taking cohomology, we have

H0(Φ) ≃ i∗2 ◦H0(Ψ) ◦ i1 ≃ i∗2 ◦ i2 ◦ ϕ ◦ i∗1 ◦ i1 ≃ ϕ. □

Observe that Proposition 4.2 applies to each Kj , and endows each Ktop(Kj) with Hodge
structures. Then we have the following Proposition.

Proposition 4.4. A Fourier–Mukai type equivalence ϕ : K1 → K2 induces a Hodge isometry
Ktop(K1) ≃ Ktop(K2).

Proof. By the functoriality of Ktop, and since the Euler pairing is defined through a canonical
evaluation map, we immediately get isometries Ktop(K1) ≃ Ktop(K2).

Since ϕ is of Fourier–Mukai type, it admits a lift Φ: (F1, f1) → (F2, f2) to the dg-
enhancements by Lemma 4.3. The construction of the Hodge filtration on Ktop only depends
on the noncommutative Hodge-to-de Rham spectral sequence, which is a motivic invariant
of the dg-enhancements. Then Ktop(K1) ≃ Ktop(K2) is a Hodge isometry. □

5. Application: weighted double solids

In this section we focus on the three-dimensional case.

5.1. Setup. We collect here our assumptions and notation.

Definition 5.1. We say that X is a weighted double solid if X is a three-dimensional smooth
DM stack equipped with a 2:1 map to a weighted projective space Y (regarded as a smooth
stack), branched over a divisor Z ∈ |OY (2d)|. We say that X is prime if it has Picard rank 1.

In the notation of 3.1, a weighted double solid satisfies n = 2 and M = m− d. Here, m
is the sum of the weights of the coordinates of Y . We will sometimes need an additional
generality assumption, which ensures that Z has Picard rank 1 (this holds for X prime and
very general). We refer to X in this case as a very general weighted double solid.

Remark 5.2. A weighted double solid with 0 < M is Fano. Indeed, denote by OX(1)
the (ample) pull-back of OY (1). Then, by the Riemann–Hurwitz formula we have KX =
f ∗KY + OX(d) = OX(−m + d) = OX(−M), and M > 0 is the index of X . Similarly,
KZ = OZ(−m+ 2d), so Z is canonically polarized if M < d and K-trivial if M = d.

Kollár’s [Kol19, Theorem 29] implies the following Lemma 5.3 even without the generality
assumption onX,X ′ in all cases except quartic surfaces in P3. For completeness, we include
a short argument which also covers quartic surfaces.

Lemma 5.3. Let X,X ′ be weighted double solids, with X very general. If there is an isomor-
phism Z ≃ Z ′, then X ≃ X ′.

Proof. Denote the isomorphism of branch divisors ϕ : Z ≃ Z ′. Since X is very general, Z
is Picard rank 1, and hence so is Z ′. This means that ϕ∗(h′) = h where h, h′ are the ample
generators of Pic(Z),Pic(Z ′), respectively. Therefore, global sections of (multiples of) h
and h′ are identified, and hence the embeddings of Z,Z ′ into P3 or P(w0, . . . , w3) coincide
up to a projective transformation. Hence, the covers X ≃ X ′ are isomorphic. □
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In the rest of the paper, we will often assume that weighted double solids satisfy 0 < M ≤
d. This wil imply that the results of Section 3 hold, including the limit case AZ ≃ Db(Z).

5.2. Hodge theory and Kuznetsov components. Here we use the results of Section 4 to
relate equivalences of Kuznetsov components to the cohomology of the ramification divisors.
Unless stated otherwise, we fix a weighted double solid X with 0 < M ≤ d. By Theorem
3.4, we have the following semiorthogonal decomposition of the µn-equivariant Kuznetsov
component.

A
µ2

X = ⟨LBj0∗D
b(Z), E1, . . . , Ed−M⟩ ⊂ Db(X)µ2 ,

where the Ei are exceptional objects, so that ⟨Ei⟩ ≃ Db(pt). By the discussion in Section 4.2,
we have an isomorphism of Hodge structures

Ktop
−t (A

µ2

X ) ≃ Ktop
−t (D

b(Z))⊕
d−M⊕
i=1

Ktop
−t (D

b(pt)) (5.1)

for all integers t.
If C is a proper category, we will write

K0(C)
⊥ := {e ∈ Ktop

0 (C) | χtop(a, e) = 0 for all a ∈ K0(C)}.

Recall that the Chern character induces a functorial isomorphism of Hodge structures
Ktop

0 (Db(Z))Q ≃ Heven(Z,Q), by Proposition 4.2. We denote its image in Heven(Z,Q) by
ΛZ . Observe that, since Z is a smooth surface, ΛZ ⊂ H0(Z,Z)⊕H2(Z,Z)⊕ 1

2
H4(Z,Z).

Lemma 5.4. Suppose that X is a prime weighted double solid with 0 < M . Then
(1) there is an isometry K0(A

µ2

X )⊥ ≃ K0(D
b(Z))⊥.

(2) The Chern character map in Proposition 4.2 restricts to an isometry on K0(D
b(Z))⊥,

and its image is contained in H2
prim(Z,Z) ⊂ ΛZ .

Proof. For (1), first suppose 0 < M ≤ d. Then, by definition of K0(A
µ2

X )⊥ and through the
decomposition (5.1), a class e ∈ Ktop

0 (Aµ2

X ) lies in K0(A
µ2

X )⊥ if and only if e ∈ K0(D
b(Z))⊥

and χtop([Ei], e) = 0 for all i (here we use that [Ei] ∈ K0(A
µ2

X )). Since (5.1) is semiorthog-
onal, this is equivalent to saying that e ∈ K0(D

b(Z))⊥. Arguing similarly, if d < M the
decomposition (3.10) implies (1).

To prove (2), we suppose [E] ∈ K0(D
b(Z))⊥. Let h be an ample divisor on Z (correspond-

ing to a hyperplane section H), and fix a point z ∈ Z . Then [OZ ], [Oh], [Oz] ∈ K0(D
b(Z)),

so [E] is orthogonal to them. The topological Euler pairing on Db(Z) satisfies Hirzebruch–
Riemann–Roch. Since dimZ = 2, these orthogonality conditions become:

0 = χtop(Oz, E) = ch0(E), (5.2)

0 = χtop(Oh, E) =

∫
Z

(
0,−h,−h

2

2

)
· ch(E) · td(Z) = −h · ch1(E) (5.3)

0 = χtop(OZ , E) =

∫
Z

ch(E) · td(Z) = ch2(E)− ch1(E) · td1(Z). (5.4)

Moreover, td1(Z) is an algebraic class, i.e. td1(Z) =
∑

i aiEi where for each i, ai ∈ Q and
Ei is an effective divisor. Again, since E ∈ K0(A

µ2

X )⊥, we have:

0 = χtop(OEi
, E) =

∫
Z

(
0,−Ei,−

E2
i

2

)
· ch(E) · td(Z) = −Ei · ch1(E). (5.5)

Then by (5.4), ch2(E) = 0. Together with (5.2) and (5.3), it follows that ch(E) ∈ H2
prim(Z,Z).
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Finally, note that under the Chern character map, the Euler pairing χtop(−,−) and the
intersection pairing on H∗(Z,Q) coincide for classes of the form (0, ch1, 0). Therefore, ch
restricts to an isometry on K0(D

b(Z))⊥. □

Proposition 5.5. Suppose that X is a very general prime weighted double solid with 0 < M .
Then the Chern character induces an isometry

K0(A
µ2

X )⊥ ≃ H2
prim(Z,Z).

Proof. Suppose [E] ∈ Ktop
0 (Db(Z)) satisfies ch(E) ∈ H2

prim(Z,Z). By Lemma 5.4, it is
enough to show that [E] ∈ K0(D

b(Z))⊥. From the definition of H2
prim(Z,Z), we have

0 = ch0(E) = h · ch1(E) = ch2(E). (5.6)

Since Z has Picard rank 1, we know

td(Z) =
(
1,−a

2
h, td2(Z)

)
,

for some integer a ∈ Z. In particular, ch1(E) · td1(Z) = 0. As in the proof of Lemma 5.4, by
Hirzebruch–Riemann–Roch it follows that

0 = χtop(Oz, E) = χtop(Oh, E) = χtop(OZ , E), (5.7)

where z ∈ Z . By our assumptions on X , the Picard group PicZ has rank 1 and is gen-
erated by h. Hence K0(D

b(Z)) has rank 3, and is generated by [OZ ], [Oh], [Oz]. Therefore
χtop(a,E) = 0 for all a ∈ K0(D

b(Z)), so [E] ∈ K0(D
b(Z))⊥. □

We now prove the main theorem of this section by combining the results above.

Theorem 5.6. Let X and X ′ be prime weighted double solids covering the same weighted
projective space, with X very general and d = d′. Suppose we have a Fourier–Mukai type
equivalence Φµ2 : Aµ2

X → A
µ2

X′ . Then this induces a Hodge isometry

H2
prim(Z,Z) ≃ H2

prim(Z
′,Z).

Proof. We first show that Φµ2 induces the required isomorphism of abelian groups preserving
the bilinear pairings. By the functorial diagram (4.2), and since the Euler pairing is defined
through a canonical evaluation map, we immediately get an isometry γ : K0(A

µ2

X )⊥ ≃
K0(A

µ2

X′)⊥. This fits into the commutative square

K0(A
µ2

X )⊥ K0(A
µ2

X′)⊥

Ktop
0 (Aµ2

X ) Ktop
0 (Aµ2

X′)

γ

δ

, (5.8)

where δ is the Hodge isometry of Proposition 4.4, and the vertical maps are functorial
inclusions.

SinceX is very general, by Proposition 5.5 there is an isometryα : K0(A
µ2

X )⊥ ≃ H2
prim(Z,Z).

Let α′ be the composition of the maps in Lemma 5.4 applied to X ′, i.e.

α′ : K0(A
µ2

X′)
⊥ ∼−→ K0(D

b(Z))⊥
ch
↪−→ H2

prim(Z
′,Z).

This is an isometry onto its image. We claim that α′ is in fact surjective. Consider the
composition

α′ ◦ γ ◦ α−1 : H2
prim(Z,Z)

∼−−→ K0(A
µ2

X )⊥
∼−−→ K0(A

µ2

X′)
⊥ ↪−→ H2

prim(Z
′,Z). (5.9)
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Since Z and Z ′ are in the same linear series |OY (nd)|, we have b2(Z) = b2(Z
′). Hence

rk(H2
prim(Z,Z)) = b2(Z)−1 = rk(H2

prim(Z
′,Z)). Therefore α′ is an isometric isomorphism,

and so is (5.9).
There is another commutative square

H2
prim(Z,Z) K0(A

µ2

X )⊥

ΛZ Ktop
0 (Aµ2

X )

α−1

, (5.10)

where the vertical maps are the natural inclusions, and the bottom horizontal arrow is the
inverse of the Chern character ΛZ → Ktop

0 (Z) followed by the inclusion of the first factor
of (5.1). The commutativity of the diagram implies that K0(A

µ2

X )⊥ carries a Hodge structure
which, on the one hand, makes α into a morphism of Hodge structures, and on the other
hand is induced by restricting the Hodge structure of Ktop(Aµ2

X ). The same arguments show
that α′ is a morphism of Hodge structures. In particular, (5.8) is a commutative diagram of
Hodge structures, where the horizontal arrows are isometries.

Therefore (5.9) is the desired isometry of Hodge structures H2
prim(Z,Z) ≃ H2

prim(Z
′,Z).

□

Remark 5.7. Alternatively, if K0(C)
⊥ vanishes for C = ⊥A

µ2

X and C = j0∗D
b(Z)⊥ (with

orthogonals taken in Db(X)µ2), one can argue as above that K0(A
µ2

X )⊥ ≃ K0(D
b(Z))⊥ by

comparing the decompositions

⟨Aµ2

X ,
⊥A

µ2

X ⟩ = Db(X)µ2 = ⟨j0∗Db(Z)⊥, j0∗D
b(Z)⟩.

given in Theorem 3.1 and Proposition 3.2. For example, one shows in this way that Proposi-
tion 5.5 and Theorem 5.6 hold for very general members of the family of Fano threefolds X4

because of the decompositions (3.9).

Remark 5.8. It would be interesting to know whether the statement of Proposition 5.5
extends to higher dimensions, since then the argument of Theorem 5.6 would also carry
through. We hope to explore this further in future work.

6. Categorical Torelli theorems

In this section, we apply Theorem 5.6 to prove a categorical Torelli theorem for the family
of Fano threefolds X2 (Theorem 6.4) and for the family of Fano threefolds Y1 (Theorem 6.5).
The latter was the only remaining index 2 open case.

Consider once again a weighted double solid X satisfying 0 < M . Denote by τ : AX →
AX the categorical involution induced by the involution of the double cover X . Also define
the rotation functor R : AX → AX by R(−) := LBX

(− ⊗ OX(1)). We have the following
relationships between the Serre functor of AX , the rotation functor R, and the categorical
involution τ :

Proposition 6.1. There are isomorphisms of functors:

• Rd ≃ τ [1],
• S−1

AX
≃ RM [−m+ 1].
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Proof. The first bullet point is by [Kuz19, Corollary 3.18]. For the second bullet point, note
that by Proposition 2.4 and Remark 5.2 we get

S−1
AX

(−) = LBLB(1) · · ·LB(M−1)(−⊗ OX(M))[−m+ 1]

= RLBLB(1) · · ·LB(M−2)(−⊗ OX(M − 1))[−m+ 1]

· · ·
= RM [−m+ 1],

by repeatedly using that LF (−⊗ OX(1)) = LF⊗OX(−1)(−)⊗ OX(1). □

Let X ′ be another weighted double solid with the same values of m, d as X . We denote
by τ ∈ Aut(AX) and τ ′ ∈ Aut(AX′) the covering autoequivalences.
Lemma 6.2. Suppose that an equivalence Φ: AX ≃ AX′ commutes with the involutions, i.e.
there is an isomorphism of functors Φ ◦ τ ≃ τ ′ ◦ Φ. Then Φ descends to an equivalence of
equivariant categories Φµ2 : Aµ2

X ≃ A
µ2

X′ .

Proof. All actions we discuss in this proof will be understood to be Z/2 ≃ µ2-actions. We
first observe that Φ preserves 1-categorical actions (see Definition 2.5(1)). This is equivalent
to the fact that Φ commutes with the involutions.

Next, we check that Φ intertwines the involutions, considered as 2-categorical actions
on AX and AX′ (Definition 2.5(2)). The 1-categorical actions τ and τ ′ lift to 2-categorical
actions because the functors τ : AX → AX and τ ′ : AX′ → AX′ are given by pulling back
geometric involutions and pullbacks are functorial. Moreover, these lifts are unique because
H2(BZ/2,C×) = 0 (see [BP23, Corollary 3.4] for the lifting criterion, and [BP23, Example
3.12] for the vanishing). Thus Φ sends the 2-categorical action τ to the unique 2-categorical
action τ ′. So Φ respects 2-categorical actions, as required. □

Lemma 6.3. Assume thatM divides an odd multiple of d. Then an equivalence Φ: AX ≃ AX′

commutes with the covering involutions.

Proof. Write d(2b+ 1) =Ma for some integers a, b. Using Proposition 6.1, up to shifts we
have

τ = τ 2b+1 ≃ Rd(2b+1) = RMa ≃ S−a
AX
,

and τ ′ ≃ S−a
AX′ up to the same shift. Then, because Serre functors and shifts commute with

equivalences of categories, Φ commutes with the involution. □

6.1. The case of X2. We now consider the case where Y = P3. In this case, the constraint
0 < M = 4− d ≤ d leaves us with two families: sextic double solids for d = 3 (see Example
3.7(2)) and quartic double solids for d = 2 (see Section 6.3). We first prove a categorical
Torelli theorem for sextic double solids X2.
Theorem 6.4. LetX,X ′ be prime Fano threefolds of index 1, and genus 2, withX very general.
Then an equivalence AX ≃ AX′ of Fourier–Mukai type implies X ≃ X ′.

Proof. In this case, M = m− d = 1 always divides d, so the equivalence Φ descends to the
equivariant categories by 6.2 and 6.3.

Then, by Theorem 5.6 we get a Hodge isometry
H2

prim(Z,Q) ≃ H2
prim(Z

′,Q).

Next, we apply the Torelli theorem for generic hypersurfaces [Don83, p. 325] (see [Voi22,
Theorem 0.2] for the statement in terms of a Hodge isometry), which implies Z ≃ Z ′. Don-
agi’s theorem applies to the present case, since its numerical assumptions are automatically
satisfied as long as d ̸= 1, 2. Now, by Lemma 5.3, we conclude that X ≃ X ′. □
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6.2. The case of Y1. We now consider a double cover X of P(1, 1, 1, 2) branched in a sextic
hypersurface Z . This cover is known as a Veronese double cone and is often denoted Y1 in
the literature (see Example 3.7(1)). These are prime Fano threefolds of index 2, and degree 1.

Theorem 6.5. Let X,X ′ be Veronese double cones, with X very general. Suppose that we
have an equivalence Φ: AX

∼−→ AX′ of Fourier–Mukai type which commutes with the covering
involution. Then X ≃ X ′.

Proof. By assumption and Lemma 6.2, Φ descends to an equivariant equivalence Aµ2

X ≃ A
µ2

X′ ,
Then, by Theorem 5.6 we have a Hodge isometry H2

prim(Z,Q) ≃ H2
prim(Z

′,Q). Now by
[Sai86, Theorem A], generic Torelli holds for the degree 6 hypersurface Z ⊂ P(1, 1, 1, 2).
Thus Z ≃ Z ′ and by Lemma 5.3 we get X ≃ X ′. □

Remark 6.6. The relations in Proposition 6.1 read R3 ≃ τ [1] and S−1
AX

≃ R2[−3]. Since any
equivalence must commute with shifts and Serre functors, then Φ commutes with τ if and
only if it commutes with R.

6.3. The case of Y2. We now consider a double cover X of P3 branched in a quartic K3
Z ⊂ P3. This cover is known as the quartic double solid and is often referred to as Y2 in the
literature. Below, we give a new proof of a categorical Torelli theorem for quartic double
solids. Other proofs have been obtained in [BT16, APR22, BP23, FLZ23].

Theorem 6.7. Let X,X ′ be quartic double solids, with X very general. Then an equivalence
AX ≃ AX′ implies X ≃ X ′.

Proof. Firstly, note that all equivalences in the quartic double solid case are of Fourier–
Mukai type by [PLZ23, Theorem 1.3]. Also note that Lemma 6.3 holds in this case. Thus,
as in the proof of Theorem 6.4, the equivalence implies a Hodge isometry H2

prim(Z,Q) ≃
H2

prim(Z
′,Q). Since X is very general, Z has Picard rank 1. This means that that the

primitive second cohomology of Z is Hodge isometric to the transcendental lattice of Z
[Huy16, Lemma 3.3.1]. So the Hodge isometry on primitive cohomology gives an isometry
between the transcendental lattices of Z and Z ′. Therefore, by [Huy16, Corollary 16.3.7],
Z and Z ′ are derived equivalent via a Fourier–Mukai functor. By [Ogu02, Theorem 1.7], Z
can only have one trivial Fourier–Mukai partner, so Z ≃ Z ′. Finally, by Lemma 5.3 we get
X ≃ X ′. □
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